Quantitative trait loci mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti.
نویسندگان
چکیده
The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F(3) advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F(3) adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.
منابع مشابه
QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti
INTRODUCTION The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. METHODOLOGY/PRINCIPAL FINDINGS Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 adv...
متن کاملQuantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti.
Quantitative trait loci (QTL) affecting the ability of the mosquito Aedes aegypti to become infected with dengue-2 virus were mapped in an F(1) intercross. Dengue-susceptible A. aegypti aegypti were crossed with dengue refractory A. aegypti formosus. F(2) offspring were analyzed for midgut infection and escape barriers. In P(1) and F(1) parents and in 207 F(2) individuals, regions of 14 cDNA lo...
متن کاملMolecular mapping of insecticide resistance genes in the yellow fever mosquito (Aedes aegypti).
Several loci conferring insecticide resistance in the yellow fever mosquito (Aedes aegypti) have previously been mapped by simple recombinational mapping. Here we describe correlation of these resistance phenotypes with molecular gene probes for insecticide target sites by RFLP mapping. The para sodium channel gene homologue and the GABA receptor gene Resistance to dieldrin map to the same geno...
متن کاملRestriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti.
Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F2 populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development...
متن کاملCharacterization of an Aedes aegypti bacterial artificial chromosome (BAC) library and chromosomal assignment of BAC clones for physical mapping quantitative trait loci that influence Plasmodium susceptibility.
Previous studies have confirmed a genetic basis for susceptibility of mosquitoes to Plasmodium parasites. Here we describe our efforts to characterize a bacterial artificial chromosome genomic library for the yellow fever mosquito, Aedes aegypti, and to identify BAC clones containing genetic markers that define quantitative trait loci (QTL) for Plasmodium gallinaceum susceptibility. This librar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 180 2 شماره
صفحات -
تاریخ انتشار 2008